212 research outputs found

    Semantic Embedding Space for Zero-Shot Action Recognition

    Full text link
    The number of categories for action recognition is growing rapidly. It is thus becoming increasingly hard to collect sufficient training data to learn conventional models for each category. This issue may be ameliorated by the increasingly popular 'zero-shot learning' (ZSL) paradigm. In this framework a mapping is constructed between visual features and a human interpretable semantic description of each category, allowing categories to be recognised in the absence of any training data. Existing ZSL studies focus primarily on image data, and attribute-based semantic representations. In this paper, we address zero-shot recognition in contemporary video action recognition tasks, using semantic word vector space as the common space to embed videos and category labels. This is more challenging because the mapping between the semantic space and space-time features of videos containing complex actions is more complex and harder to learn. We demonstrate that a simple self-training and data augmentation strategy can significantly improve the efficacy of this mapping. Experiments on human action datasets including HMDB51 and UCF101 demonstrate that our approach achieves the state-of-the-art zero-shot action recognition performance.Comment: 5 page

    Deep Multi-task Representation Learning: A Tensor Factorisation Approach

    Get PDF
    Most contemporary multi-task learning methods assume linear models. This setting is considered shallow in the era of deep learning. In this paper, we present a new deep multi-task representation learning framework that learns cross-task sharing structure at every layer in a deep network. Our approach is based on generalising the matrix factorisation techniques explicitly or implicitly used by many conventional MTL algorithms to tensor factorisation, to realise automatic learning of end-to-end knowledge sharing in deep networks. This is in contrast to existing deep learning approaches that need a user-defined multi-task sharing strategy. Our approach applies to both homogeneous and heterogeneous MTL. Experiments demonstrate the efficacy of our deep multi-task representation learning in terms of both higher accuracy and fewer design choices.Comment: 9 pages, Accepted to ICLR 2017 Conference Track. This is a conference version of the paper. For the multi-domain learning part (not in this version), please refer to https://arxiv.org/pdf/1605.06391v1.pd

    Zero-Shot Domain Adaptation via Kernel Regression on the Grassmannian

    Get PDF
    Most visual recognition methods implicitly assume the data distribution remains unchanged from training to testing. However, in practice domain shift often exists, where real-world factors such as lighting and sensor type change between train and test, and classifiers do not generalise from source to target domains. It is impractical to train separate models for all possible situations because collecting and labelling the data is expensive. Domain adaptation algorithms aim to ameliorate domain shift, allowing a model trained on a source to perform well on a different target domain. However, even for the setting of unsupervised domain adaptation, where the target domain is unlabelled, collecting data for every possible target domain is still costly. In this paper, we propose a new domain adaptation method that has no need to access either data or labels of the target domain when it can be described by a parametrised vector and there exits several related source domains within the same parametric space. It greatly reduces the burden of data collection and annotation, and our experiments show some promising results.Comment: Accepted to BMVC 2015 Workshop on Differential Geometry in Computer Vision (DIFF-CV

    BayesDLL: Bayesian Deep Learning Library

    Full text link
    We release a new Bayesian neural network library for PyTorch for large-scale deep networks. Our library implements mainstream approximate Bayesian inference algorithms: variational inference, MC-dropout, stochastic-gradient MCMC, and Laplace approximation. The main differences from other existing Bayesian neural network libraries are as follows: 1) Our library can deal with very large-scale deep networks including Vision Transformers (ViTs). 2) We need virtually zero code modifications for users (e.g., the backbone network definition codes do not neet to be modified at all). 3) Our library also allows the pre-trained model weights to serve as a prior mean, which is very useful for performing Bayesian inference with the large-scale foundation models like ViTs that are hard to optimise from scratch with the downstream data alone. Our code is publicly available at: \url{https://github.com/SamsungLabs/BayesDLL}\footnote{A mirror repository is also available at: \url{https://github.com/minyoungkim21/BayesDLL}.}

    A Unified Perspective on Multi-Domain and Multi-Task Learning

    Get PDF
    In this paper, we provide a new neural-network based perspective on multi-task learning (MTL) and multi-domain learning (MDL). By introducing the concept of a semantic descriptor, this framework unifies MDL and MTL as well as encompassing various classic and recent MTL/MDL algorithms by interpreting them as different ways of constructing semantic descriptors. Our interpretation provides an alternative pipeline for zero-shot learning (ZSL), where a model for a novel class can be constructed without training data. Moreover, it leads to a new and practically relevant problem setting of zero-shot domain adaptation (ZSDA), which is the analogous to ZSL but for novel domains: A model for an unseen domain can be generated by its semantic descriptor. Experiments across this range of problems demonstrate that our framework outperforms a variety of alternatives.Comment: 9 pages, Accepted to ICLR 2015 Conference Trac

    Trace Norm Regularised Deep Multi-Task Learning

    Get PDF
    We propose a framework for training multiple neural networks simultaneously. The parameters from all models are regularised by the tensor trace norm, so that each neural network is encouraged to reuse others' parameters if possible -- this is the main motivation behind multi-task learning. In contrast to many deep multi-task learning models, we do not predefine a parameter sharing strategy by specifying which layers have tied parameters. Instead, our framework considers sharing for all shareable layers, and the sharing strategy is learned in a data-driven way.Comment: Submission to Workshop track - ICLR 201
    • …
    corecore